'Weak Dependency Graph [60.0]' ------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { concat(leaf(), Y) -> Y , concat(cons(U, V), Y) -> cons(U, concat(V, Y)) , lessleaves(X, leaf()) -> false() , lessleaves(leaf(), cons(W, Z)) -> true() , lessleaves(cons(U, V), cons(W, Z)) -> lessleaves(concat(U, V), concat(W, Z))} Details: We have computed the following set of weak (innermost) dependency pairs: { concat^#(leaf(), Y) -> c_0() , concat^#(cons(U, V), Y) -> c_1(concat^#(V, Y)) , lessleaves^#(X, leaf()) -> c_2() , lessleaves^#(leaf(), cons(W, Z)) -> c_3() , lessleaves^#(cons(U, V), cons(W, Z)) -> c_4(lessleaves^#(concat(U, V), concat(W, Z)))} The usable rules are: { concat(leaf(), Y) -> Y , concat(cons(U, V), Y) -> cons(U, concat(V, Y))} The estimated dependency graph contains the following edges: {concat^#(cons(U, V), Y) -> c_1(concat^#(V, Y))} ==> {concat^#(cons(U, V), Y) -> c_1(concat^#(V, Y))} {concat^#(cons(U, V), Y) -> c_1(concat^#(V, Y))} ==> {concat^#(leaf(), Y) -> c_0()} {lessleaves^#(cons(U, V), cons(W, Z)) -> c_4(lessleaves^#(concat(U, V), concat(W, Z)))} ==> {lessleaves^#(cons(U, V), cons(W, Z)) -> c_4(lessleaves^#(concat(U, V), concat(W, Z)))} {lessleaves^#(cons(U, V), cons(W, Z)) -> c_4(lessleaves^#(concat(U, V), concat(W, Z)))} ==> {lessleaves^#(leaf(), cons(W, Z)) -> c_3()} {lessleaves^#(cons(U, V), cons(W, Z)) -> c_4(lessleaves^#(concat(U, V), concat(W, Z)))} ==> {lessleaves^#(X, leaf()) -> c_2()} We consider the following path(s): 1) { lessleaves^#(cons(U, V), cons(W, Z)) -> c_4(lessleaves^#(concat(U, V), concat(W, Z))) , lessleaves^#(leaf(), cons(W, Z)) -> c_3()} The usable rules for this path are the following: { concat(leaf(), Y) -> Y , concat(cons(U, V), Y) -> cons(U, concat(V, Y))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { concat(leaf(), Y) -> Y , concat(cons(U, V), Y) -> cons(U, concat(V, Y)) , lessleaves^#(cons(U, V), cons(W, Z)) -> c_4(lessleaves^#(concat(U, V), concat(W, Z))) , lessleaves^#(leaf(), cons(W, Z)) -> c_3()} Details: We apply the weight gap principle, strictly orienting the rules { concat(leaf(), Y) -> Y , lessleaves^#(leaf(), cons(W, Z)) -> c_3()} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { concat(leaf(), Y) -> Y , lessleaves^#(leaf(), cons(W, Z)) -> c_3()} Details: Interpretation Functions: concat(x1, x2) = [1] x1 + [1] x2 + [1] leaf() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [0] lessleaves(x1, x2) = [0] x1 + [0] x2 + [0] false() = [0] true() = [0] concat^#(x1, x2) = [0] x1 + [0] x2 + [0] c_0() = [0] c_1(x1) = [0] x1 + [0] lessleaves^#(x1, x2) = [1] x1 + [1] x2 + [1] c_2() = [0] c_3() = [0] c_4(x1) = [1] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {lessleaves^#(cons(U, V), cons(W, Z)) -> c_4(lessleaves^#(concat(U, V), concat(W, Z)))} and weakly orienting the rules { concat(leaf(), Y) -> Y , lessleaves^#(leaf(), cons(W, Z)) -> c_3()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {lessleaves^#(cons(U, V), cons(W, Z)) -> c_4(lessleaves^#(concat(U, V), concat(W, Z)))} Details: Interpretation Functions: concat(x1, x2) = [1] x1 + [1] x2 + [1] leaf() = [9] cons(x1, x2) = [1] x1 + [1] x2 + [8] lessleaves(x1, x2) = [0] x1 + [0] x2 + [0] false() = [0] true() = [0] concat^#(x1, x2) = [0] x1 + [0] x2 + [0] c_0() = [0] c_1(x1) = [0] x1 + [0] lessleaves^#(x1, x2) = [1] x1 + [1] x2 + [14] c_2() = [0] c_3() = [0] c_4(x1) = [1] x1 + [8] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {concat(cons(U, V), Y) -> cons(U, concat(V, Y))} Weak Rules: { lessleaves^#(cons(U, V), cons(W, Z)) -> c_4(lessleaves^#(concat(U, V), concat(W, Z))) , concat(leaf(), Y) -> Y , lessleaves^#(leaf(), cons(W, Z)) -> c_3()} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {concat(cons(U, V), Y) -> cons(U, concat(V, Y))} Weak Rules: { lessleaves^#(cons(U, V), cons(W, Z)) -> c_4(lessleaves^#(concat(U, V), concat(W, Z))) , concat(leaf(), Y) -> Y , lessleaves^#(leaf(), cons(W, Z)) -> c_3()} Details: The problem is Match-bounded by 1. The enriched problem is compatible with the following automaton: { concat_0(2, 2) -> 4 , concat_0(2, 2) -> 5 , concat_1(2, 2) -> 6 , concat_1(2, 6) -> 6 , leaf_0() -> 2 , leaf_0() -> 4 , leaf_0() -> 5 , leaf_0() -> 6 , cons_0(2, 2) -> 2 , cons_0(2, 2) -> 4 , cons_0(2, 2) -> 5 , cons_0(2, 2) -> 6 , cons_1(2, 6) -> 4 , cons_1(2, 6) -> 5 , cons_1(2, 6) -> 6 , lessleaves^#_0(2, 2) -> 1 , lessleaves^#_0(4, 5) -> 3 , lessleaves^#_1(6, 6) -> 7 , c_3_0() -> 1 , c_3_0() -> 3 , c_3_1() -> 3 , c_3_1() -> 7 , c_4_0(3) -> 1 , c_4_1(7) -> 1 , c_4_1(7) -> 3 , c_4_1(7) -> 7} 2) { lessleaves^#(cons(U, V), cons(W, Z)) -> c_4(lessleaves^#(concat(U, V), concat(W, Z))) , lessleaves^#(X, leaf()) -> c_2()} The usable rules for this path are the following: { concat(leaf(), Y) -> Y , concat(cons(U, V), Y) -> cons(U, concat(V, Y))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { concat(leaf(), Y) -> Y , concat(cons(U, V), Y) -> cons(U, concat(V, Y)) , lessleaves^#(cons(U, V), cons(W, Z)) -> c_4(lessleaves^#(concat(U, V), concat(W, Z))) , lessleaves^#(X, leaf()) -> c_2()} Details: We apply the weight gap principle, strictly orienting the rules { concat(leaf(), Y) -> Y , lessleaves^#(X, leaf()) -> c_2()} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { concat(leaf(), Y) -> Y , lessleaves^#(X, leaf()) -> c_2()} Details: Interpretation Functions: concat(x1, x2) = [1] x1 + [1] x2 + [1] leaf() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [0] lessleaves(x1, x2) = [0] x1 + [0] x2 + [0] false() = [0] true() = [0] concat^#(x1, x2) = [0] x1 + [0] x2 + [0] c_0() = [0] c_1(x1) = [0] x1 + [0] lessleaves^#(x1, x2) = [1] x1 + [1] x2 + [1] c_2() = [0] c_3() = [0] c_4(x1) = [1] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {lessleaves^#(cons(U, V), cons(W, Z)) -> c_4(lessleaves^#(concat(U, V), concat(W, Z)))} and weakly orienting the rules { concat(leaf(), Y) -> Y , lessleaves^#(X, leaf()) -> c_2()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {lessleaves^#(cons(U, V), cons(W, Z)) -> c_4(lessleaves^#(concat(U, V), concat(W, Z)))} Details: Interpretation Functions: concat(x1, x2) = [1] x1 + [1] x2 + [1] leaf() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [8] lessleaves(x1, x2) = [0] x1 + [0] x2 + [0] false() = [0] true() = [0] concat^#(x1, x2) = [0] x1 + [0] x2 + [0] c_0() = [0] c_1(x1) = [0] x1 + [0] lessleaves^#(x1, x2) = [1] x1 + [1] x2 + [7] c_2() = [0] c_3() = [0] c_4(x1) = [1] x1 + [9] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {concat(cons(U, V), Y) -> cons(U, concat(V, Y))} Weak Rules: { lessleaves^#(cons(U, V), cons(W, Z)) -> c_4(lessleaves^#(concat(U, V), concat(W, Z))) , concat(leaf(), Y) -> Y , lessleaves^#(X, leaf()) -> c_2()} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {concat(cons(U, V), Y) -> cons(U, concat(V, Y))} Weak Rules: { lessleaves^#(cons(U, V), cons(W, Z)) -> c_4(lessleaves^#(concat(U, V), concat(W, Z))) , concat(leaf(), Y) -> Y , lessleaves^#(X, leaf()) -> c_2()} Details: The problem is Match-bounded by 1. The enriched problem is compatible with the following automaton: { concat_0(2, 2) -> 4 , concat_0(2, 2) -> 5 , concat_1(2, 2) -> 6 , concat_1(2, 6) -> 6 , leaf_0() -> 2 , leaf_0() -> 4 , leaf_0() -> 5 , leaf_0() -> 6 , cons_0(2, 2) -> 2 , cons_0(2, 2) -> 4 , cons_0(2, 2) -> 5 , cons_0(2, 2) -> 6 , cons_1(2, 6) -> 4 , cons_1(2, 6) -> 5 , cons_1(2, 6) -> 6 , lessleaves^#_0(2, 2) -> 1 , lessleaves^#_0(4, 5) -> 3 , lessleaves^#_1(6, 6) -> 7 , c_2_0() -> 1 , c_2_0() -> 3 , c_2_1() -> 7 , c_4_0(3) -> 1 , c_4_1(7) -> 1 , c_4_1(7) -> 3 , c_4_1(7) -> 7} 3) {lessleaves^#(cons(U, V), cons(W, Z)) -> c_4(lessleaves^#(concat(U, V), concat(W, Z)))} The usable rules for this path are the following: { concat(leaf(), Y) -> Y , concat(cons(U, V), Y) -> cons(U, concat(V, Y))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { concat(leaf(), Y) -> Y , concat(cons(U, V), Y) -> cons(U, concat(V, Y)) , lessleaves^#(cons(U, V), cons(W, Z)) -> c_4(lessleaves^#(concat(U, V), concat(W, Z)))} Details: We apply the weight gap principle, strictly orienting the rules {concat(leaf(), Y) -> Y} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {concat(leaf(), Y) -> Y} Details: Interpretation Functions: concat(x1, x2) = [1] x1 + [1] x2 + [1] leaf() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [0] lessleaves(x1, x2) = [0] x1 + [0] x2 + [0] false() = [0] true() = [0] concat^#(x1, x2) = [0] x1 + [0] x2 + [0] c_0() = [0] c_1(x1) = [0] x1 + [0] lessleaves^#(x1, x2) = [1] x1 + [1] x2 + [1] c_2() = [0] c_3() = [0] c_4(x1) = [1] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {lessleaves^#(cons(U, V), cons(W, Z)) -> c_4(lessleaves^#(concat(U, V), concat(W, Z)))} and weakly orienting the rules {concat(leaf(), Y) -> Y} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {lessleaves^#(cons(U, V), cons(W, Z)) -> c_4(lessleaves^#(concat(U, V), concat(W, Z)))} Details: Interpretation Functions: concat(x1, x2) = [1] x1 + [1] x2 + [1] leaf() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [8] lessleaves(x1, x2) = [0] x1 + [0] x2 + [0] false() = [0] true() = [0] concat^#(x1, x2) = [0] x1 + [0] x2 + [0] c_0() = [0] c_1(x1) = [0] x1 + [0] lessleaves^#(x1, x2) = [1] x1 + [1] x2 + [0] c_2() = [0] c_3() = [0] c_4(x1) = [1] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {concat(cons(U, V), Y) -> cons(U, concat(V, Y))} Weak Rules: { lessleaves^#(cons(U, V), cons(W, Z)) -> c_4(lessleaves^#(concat(U, V), concat(W, Z))) , concat(leaf(), Y) -> Y} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {concat(cons(U, V), Y) -> cons(U, concat(V, Y))} Weak Rules: { lessleaves^#(cons(U, V), cons(W, Z)) -> c_4(lessleaves^#(concat(U, V), concat(W, Z))) , concat(leaf(), Y) -> Y} Details: The problem is Match-bounded by 1. The enriched problem is compatible with the following automaton: { concat_0(2, 2) -> 4 , concat_0(2, 2) -> 5 , concat_1(2, 2) -> 6 , concat_1(2, 6) -> 6 , leaf_0() -> 2 , leaf_0() -> 4 , leaf_0() -> 5 , leaf_0() -> 6 , cons_0(2, 2) -> 2 , cons_0(2, 2) -> 4 , cons_0(2, 2) -> 5 , cons_0(2, 2) -> 6 , cons_1(2, 6) -> 4 , cons_1(2, 6) -> 5 , cons_1(2, 6) -> 6 , lessleaves^#_0(2, 2) -> 1 , lessleaves^#_0(4, 5) -> 3 , lessleaves^#_1(6, 6) -> 7 , c_4_0(3) -> 1 , c_4_1(7) -> 1 , c_4_1(7) -> 3 , c_4_1(7) -> 7} 4) { concat^#(cons(U, V), Y) -> c_1(concat^#(V, Y)) , concat^#(leaf(), Y) -> c_0()} The usable rules for this path are empty. We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: concat(x1, x2) = [0] x1 + [0] x2 + [0] leaf() = [0] cons(x1, x2) = [0] x1 + [0] x2 + [0] lessleaves(x1, x2) = [0] x1 + [0] x2 + [0] false() = [0] true() = [0] concat^#(x1, x2) = [0] x1 + [0] x2 + [0] c_0() = [0] c_1(x1) = [0] x1 + [0] lessleaves^#(x1, x2) = [0] x1 + [0] x2 + [0] c_2() = [0] c_3() = [0] c_4(x1) = [0] x1 + [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {concat^#(leaf(), Y) -> c_0()} Weak Rules: {concat^#(cons(U, V), Y) -> c_1(concat^#(V, Y))} Details: We apply the weight gap principle, strictly orienting the rules {concat^#(leaf(), Y) -> c_0()} and weakly orienting the rules {concat^#(cons(U, V), Y) -> c_1(concat^#(V, Y))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {concat^#(leaf(), Y) -> c_0()} Details: Interpretation Functions: concat(x1, x2) = [0] x1 + [0] x2 + [0] leaf() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [0] lessleaves(x1, x2) = [0] x1 + [0] x2 + [0] false() = [0] true() = [0] concat^#(x1, x2) = [1] x1 + [1] x2 + [1] c_0() = [0] c_1(x1) = [1] x1 + [0] lessleaves^#(x1, x2) = [0] x1 + [0] x2 + [0] c_2() = [0] c_3() = [0] c_4(x1) = [0] x1 + [0] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: { concat^#(leaf(), Y) -> c_0() , concat^#(cons(U, V), Y) -> c_1(concat^#(V, Y))} Details: The given problem does not contain any strict rules 5) {concat^#(cons(U, V), Y) -> c_1(concat^#(V, Y))} The usable rules for this path are empty. We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: concat(x1, x2) = [0] x1 + [0] x2 + [0] leaf() = [0] cons(x1, x2) = [0] x1 + [0] x2 + [0] lessleaves(x1, x2) = [0] x1 + [0] x2 + [0] false() = [0] true() = [0] concat^#(x1, x2) = [0] x1 + [0] x2 + [0] c_0() = [0] c_1(x1) = [0] x1 + [0] lessleaves^#(x1, x2) = [0] x1 + [0] x2 + [0] c_2() = [0] c_3() = [0] c_4(x1) = [0] x1 + [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {concat^#(cons(U, V), Y) -> c_1(concat^#(V, Y))} Weak Rules: {} Details: We apply the weight gap principle, strictly orienting the rules {concat^#(cons(U, V), Y) -> c_1(concat^#(V, Y))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {concat^#(cons(U, V), Y) -> c_1(concat^#(V, Y))} Details: Interpretation Functions: concat(x1, x2) = [0] x1 + [0] x2 + [0] leaf() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [8] lessleaves(x1, x2) = [0] x1 + [0] x2 + [0] false() = [0] true() = [0] concat^#(x1, x2) = [1] x1 + [1] x2 + [1] c_0() = [0] c_1(x1) = [1] x1 + [3] lessleaves^#(x1, x2) = [0] x1 + [0] x2 + [0] c_2() = [0] c_3() = [0] c_4(x1) = [0] x1 + [0] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: {concat^#(cons(U, V), Y) -> c_1(concat^#(V, Y))} Details: The given problem does not contain any strict rules